23 research outputs found

    The Relationship between the UniProt Knowledgebase (UniProtKB) and the IntAct Molecular Interaction Databases

    Get PDF
    IntAct provides a freely available, open source database system and analysis tools for protein interaction data. All interactions are derived from literature curation or direct user submission and all experimental information relating to binary protein-protein
interactions is entered into the IntAct database by curators, via a web-based editor. Interaction information is added to the SUBUNIT comment and the RP line of the relevant publication within the UniProtKB entry. There may be a single INTERACTION comment present within a UniProtKB entry, which conveys information relevant to binary protein-protein interactions. This is automatically derived from the IntAct database and is updated on a triweekly basis. Interactions can be derived by any appropriate experimental method but must be confirmed by a second interaction if resulting from a single yeast2hybrid experiment. For large-scale experiments, interactions are considered if a high confidence score is assigned by the authors. The INTERACTION line contains a direct link to IntAct that provides detailed information for the experimental support. These lines are not changed manually and any discrepancy is reported to IntAct for updates. There is also a database crossreference line within the UniProtKB entry i.e.: DR IntAct _UniProtKB AC, which directs the user to additional interaction data for that molecule. 
UniProt is supported by grants from the National Institutes of Health, European Commission, Swiss Federal Government and PATRIC BRC.
IntAct is funded by the European Commission under FELICS, contract number 021902 (RII3) within the Research Infrastructure Action of the FP6 "Structuring the European Research Area" Programme

    Design and Evaluation in eHealth: Challenges and Implications for an Interdisciplinary Field

    Get PDF
    Reviewer: Ammenwerth, ElskeReviewer: Aarts, Jos[This item is a preserved copy and is not necessarily the most recent version. To view the current item, visit http://www.jmir.org/2007/2/e15/ ] : Much has been written about insufficient user involvement in the design of eHealth applications, the lack of evidence demonstrating impact, and the difficulties these bring for adoption. Part of the problem lies in the differing languages, cultures, motives, and operational constraints of producers and evaluators of eHealth systems and services. This paper reflects on the benefits of and barriers to interdisciplinary collaboration in eHealth, focusing particularly on the relationship between software developers and health services researchers. It argues that the common pattern of silo or parallel working may be ameliorated by developing mutual awareness and respect for each others’ methods, epistemologies, and contextual drivers and by recognizing and harnessing potential synergies. Similarities and differences between models and techniques used in both communities are highlighted in order to illustrate the potential for integrated approaches and the strengths of unique paradigms. By sharing information about our research approaches and seeking to actively collaborate in the process of design and evaluation, the aim of achieving technologies that are truly user-informed, fit for context, high quality, and of demonstrated value is more likely to be realized. This may involve embracing new ways of working jointly that are unfamiliar to the stakeholders involved and that challenge disciplinary conventions. It also has policy implications for agencies commissioning research and development in this area
    corecore